Second-Order Weight Distributions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-weight codes and second order recurrences

Cyclic codes of dimension 2 over a finite field are shown to have at most two nonzero weights. This extends a construction of Rao et al (2010) and disproves a conjecture of Schmidt-White (2002). We compute their weight distribution, and give a condition on the roots of their check polynomials for them to be MDS.

متن کامل

Expected Utility from Multinomial Second-order Probability Distributions

We consider the problem of maximizing expected utility when utilities and probabilities are given by discrete probability distributions so that expected utility is a discrete stochastic variable. As for discrete second-order distributions, that is probability distributions where the variables are themselves probabilities, the multinomial family is a reasonable choice at least if first-order pro...

متن کامل

Second-order complex random vectors and normal distributions

We formulate as a deconvolution problem thecausalhoncausal non-Gaussian multichannel autoregressive (AR)parameter estimation problem. The super exponential aljporithmpresented in a recent paper by Shalvi and Weinstein is generalizedto the vector case. We present an adaptive implementation that isvery attractive since it is higher order statistics (HOS) based b u t doesno...

متن کامل

Discrete Second-order Probability Distributions that Factor into Marginals

In realistic decision problems there is more often than not uncertainty in the background information. As for representation of uncertain or imprecise probability values, second-order probability, i.e. probability distributions over probabilities, offers an option. With a subjective view of probability second-order probability would seem to be impractical since it is hard for a person to constr...

متن کامل

Weight enumerator for second-order Reed-Muller codes

In this paper, we establish the following result. Theorem: Ai, the number of codewords of weight i in the secondorder binary Reed-Muller code of length 2m, is given by Ai = 0 unless i = 2m-1 or 2m-1 f 2m+-i, for some j, 0 < j < [m/2], A0 = A2m =l,and Azmj(f+l) (2” 1>(2+l 1) 1*zsn-,-i = 2 1 4-l I ‘(2m-2 i 1)(2”-3 1) . 42 1 . . . 1 (2m-2i+2 _ 1)(2m-Zi+l _ 1) . 1 4’ 1 I , 1 I j I [M4 INTRODUCTION ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2011

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2011.2162272